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Abstract

Transverse stability of the drive beam is critical to plasma wakefield accelerators. A long, rela-

tivistic particle beam propagating in an overdense plasma is subject to beam envelope modulation

and centroid displacement (hosing) instabilities. Coupled equations for the beam centroid and

envelope are derived and solved. It is shown that the hosing growth rate is comparable to self-

modulation, and coupling of the self-modulation enhances beam hosing and induces harmonic

content. Large amounts of hosing can significantly alter the structure of the plasma wakefields.
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I. INTRODUCTION

Plasma-based accelerators [1] are considered a candidate technology for the next genera-

tion colliders to expand the energy frontier of high energy physics experiments [2]. Plasma-

based acceleration is realized by using an intense laser [1] or charged-particle beam [3–5]

to excite large amplitude electron plasma waves with relativistic phase velocity. The elec-

tric field amplitude of the plasma wave (space-charge oscillation) can be several orders

of magnitude greater than conventional accelerators, on the order of E0 = cmeωp/e, or

E0[V/m] ' 96
√
n0[cm−3], where ωp = (4πn0e

2/me)
1/2 is the plasma frequency, n0 is the

ambient electron number density, me and e are the electron rest mass and charge, respec-

tively, and c is the speed of light in vacuum.

It has been proposed to use a highly relativistic proton beam, such as those available at

CERN (European Organization for Nuclear Research), to drive a plasma accelerator [6, 7],

effectively using the plasma to transfer energy from the proton beam to a lepton beam.

Efficient plasma wave excitation requires beam drivers with spatial structure on the scale

of the plasma skin depth, and compact, high-gradient plasma accelerators (i.e., high plasma

density) require short drive beams. Generating short proton beams (or proton beams with

spatial structure at the plasma frequency) is challenging, for interesting plasma densities,

and it has been proposed to rely on a beam-plasma instability to modulate the beam at the

plasma wavelength λp = 2πc/ωp, driving a large amplitude wave [8–10]. The growth and

phase velocity of the self-modulation instability has been studied in Refs. [11, 12]. Tapered

plasmas may be considered to control the phase velocity of the self-modulated beam-driven

plasma wave, although sufficiently large background density variations will suppress the

instability [13]. Proof-of-principle experiments to study the physics of beam self-modulation

using lepton beams have also been proposed [14].

Transverse stability of the drive particle beam is a major concern for the development

of the beam-driven plasma wakefield accelerator (PWFA), and particularly for drive beams

longer than the plasma skin depth (such as in the proposed self-modulated proton-driven

PWFA). In this work we examine the hosing instability of a long drive beam undergoing

self-modulation in an overdense plasma. Beam hosing, a type of transverse two-stream

instability, is the result of the feedback between a head-to-tail centroid displacement with

respect to the propagation direction and the excited plasma wakefield that leads to growth
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in the beam centroid displacement. Previous work on beam hosing in plasma has focused

on the underdense regime where the beam density is large compared to the plasma density

nb � n0 (where nb is the beam density), and both the long-beam (adiabatic, ion-channel)

regime (kpLb � 1) [15] and the nonlinear short-bunch (kpLb < 1) blow-out regime [16]

has been examined. Future proton-driven PWFA experiments will be in the overdense

regime where nb � n0. Whittum [17] considered the transverse two-stream instability in

the overdense regime assuming a rigid beam model. Here we derive and solve the coupled

beam envelope and centroid equations self-consistently driven by the beam-excited plasma

wave in the overdense regime. It was suggested in Ref. [8] that the self-modulation instability

grows much faster than the hosing instability and that the self-modulation may alleviate the

effects of hosing. In this work we calculate the hosing growth rate including return current

effects (where the beam radius is of order the plasma skin depth k−1p ). The growth rate

for beam hosing in the long-beam, strongly-coupled overdense regime is comparable to that

of the self-modulation instability. It is also shown that the coupling of the beam envelope

modulations enhances the growth of the beam centroid displacements. A similar coupling

between laser hosing and self-modulation can also occur for long laser pulses propagating in

underdense plasma [18].

II. BEAM CENTROID EVOLUTION

The wakefield generated by a relativistic charged particle beam moving through an over-

dense, initially neutral, plasma can be calculated using the quasi-static, cold plasma fluid

and Maxwell equations assuming nb < n0. The evolution of the normalized wake potential

ψ = e(Φ − Az)/mec
2 (with Φ the electrostatic and Az the axial vector potentials) of the

quasi-static beam-driven plasma wave is given by

(
∂2ζ + 1

) (
∇2
⊥ − 1

)
ψ = −(q/e)nb/n0, (1)

where q is the charge of the beam particle with beam density nb, and ζ = kp(z − βbt) is the

normalized co-moving variable with kp = ωp/c and vb = cβb is the drive beam velocity. We

have assumed a highly-relativistic drive beam such that γ = (1− β2
b )
−1/2 � 1 and that the

background plasma ions are immobile on the time scales of interest [19]. In the following all

length scales are normalized to the plasma skin depth k−1p . The force on a relativistic beam
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from the plasma wave is given by the wake potential F /(eE0) = −(q/e)∇ψ.

Consider a general (axisymmetric) transverse beam density distribution with a small

centroid offset in the x-direction:

nb

(√
[x− xc]2 + y2

)
' nb0 − (∂rnb0)xc cos θ, (2)

where nb0 = nb(x, y, xc = 0) = nb(r). Note that the charge per unit length in a beam

slice is conserved with the centroid displacement. Given the general beam distribution

nb =
∑

m n̂m cos(mθ), the wake potential may be written as ψ = −(q/e)
∑

m ψ̂m cos(mθ)

satisfying (
∂2ζ + 1

) [
∂2r + (1/r)∂r −m2/r2 − 1

]
ψ̂m = n̂m/n0 (3)

with the Green function solution

ψ̂m =

∫ ζ

∞
dζ ′ sin(ζ − ζ ′)

∫ ∞
0

r′dr′Km(r>)Im(r<)
n̂m
n0

, (4)

where r< (r>) is the smaller (larger) of r and r′. The force provided by the beam-excited

plasma wave along the centroid displacement is Fx/(eE0) = −(q/e)∂xψ.

The evolution equation for the centroid xc = 〈x〉 of any beam slice (ζ) is

d2xc
dz2

= −(q/e)
me

γMb

〈∂xψ〉, (5)

where Mb is the mass of the beam particle and the brackets indicate an average over the

transverse distribution. Averaging the transverse force over the beam distribution Eq. (2)

yields the equation for the centroid evolution

d2xc
dz2

+ xc
me

γMb

∫∞
0
rdr(∂rnb0)(∂rψ̂0)

2
∫∞
0
rdr(nb0)

=
me

γMb

∫∞
0
dr(nb0)[∂r(rψ̂1)]

2
∫∞
0
rdr(nb0)

(6)

for any general axisymmetric beam distribution nb0. Note that, to order O(xc/〈x2〉1/2) a

cylindrically-symmetric distribution will remain cylindrically-symmetric 〈(x − xc)
2〉(z) =

〈y2〉(z). Assuming a flat-top transverse distribution with a centroid perturbation, i.e., nb =

n̂b(rb0/rb)
2Θ(rb −

√
[x− xc]2 + y2), Eq. (6) may be evaluated to yield the centroid xc(ζ, z)

evolution equation at any beam slice (ζ) in the long beam (i.e., neglecting initial longitudinal

beam density variations) adiabatic regime:

d2xc
dz2

=
k2b
γ

I1(rb)

rb

∫ ζ

∞
dζ ′ sin(ζ − ζ ′) r2b0

rb(ζ ′)
K1(rb(ζ

′)) [xc(ζ
′)− xc(ζ)] , (7)
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where k2b = 4πn̂be
2/Mbc

2 is the beam wavenumber and rb(ζ, z) is the beam radius. Equa-

tion (7) indicates that a beam tilt or nonuniform head-to-tail displacement with respect

to the beam propagation direction xc(ζ) 6= xc(ζ
′) is required for the hose instability. This

is similar to the centroid equation describing laser hosing for which a head-to-tail centroid

non-uniformity is also required for instability [18]. One consequence is that axis-symmetric

beams should be stable to hosing, and observation of hosing in particle-in-cell codes that

load axis-symmetric beams is unphysical and the result of numerical noise in the algorithm

and from the finite number of macro-particles.

If the beam envelope is non-evolving rb = r0 = constant, i.e., a rigid beam approximation

valid for a long beam without a seed for the self-modulation instability, Eq. (7) can be

linearized to yield

(∂2ζ + 1)(∂2z + µk̂2β)xc = µk̂2βxc, (8)

where µ = 2I1(r0)K1(r0) and k̂β = (kb/kp)(2γ)−1/2. In the narrow beam limit r0 � 1,

µ ' 1 − (0.366 + ln[1/r0])r
2
0/2. The factor µ(r0) describes the plasma return current; for

r0 ∼ 1, the plasma return current partially flows through the bulk of the beam neutralizing

the current, reducing the focusing [20] and instability coupling. In the long-beam, early-time

regime such that |ζ| � k̂βz (i.e., |∂zx̂c| � k̂β and |∂ζ x̂c| � 1), Eq. (8) yields

(∂ζ∂
2
z + iµk̂2β/2)x̂c = 0, (9)

where x̂c is a slowly-varying envelope of the centroid displacement: xc = (x̂c/2) exp(iζ)+c.c..

Consider the initial conditions, x̂c(z, ζ = 0) = δcΘ(z), x̂c(z = 0, ζ) = δc, and ∂ẑx̂c(z =

0, ζ) = 0, which correspond to a beam with slice-to-slice centroid fluctuations with a Fourier

component at kp with amplitude δc. Using standard Laplace transform techniques, and

applying the method of steepest descents, yields the asymptotic solution

xc = δc

[
31/4

(8π)1/2

]
eNh

N
1/2
h

cos
(
π/12− kpζ −Nh/

√
3
)
, (10)

where the number of e-folds of the hose instability is

Nh = (33/2/4)
(
µk̂2βζz

2
)1/3

. (11)

Note that a similar growth rate was derived in Ref. [17] for a rigid beam with a Bennett

profile. In general, the instability will be weakly dependent on the initial transverse beam

distribution, and the growth rate Eq. (11) (calculated assuming a flat-top distribution) will
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FIG. 1. (Color online) Centroid displacement xc from numerical solution of Eq. (7) versus ζ after

propagating k̂βz = 0.81 (blue curve) and k̂βz = 1.1 (red curve), and amplitude of the asymptotic

solution Eq. (10) (dashed lines) for a 450 GeV proton beam with n̂b/n0 = 0.008 and r0 = 1.

be modified by a constant of order unity. For example, if a parabolic beam distribution (with

equal charge and rms radius) is assumed, the hosing growth rate is Nparabolic/Nh = 2/32/3

for r0 � 1.

Comparing the hosing growth rate to the self-modulation instability growth rate [11],

Nsmi = (33/2/4)(2νk̂2βζz
2)1/3 with ν = 4I2(r0)K2(r0), one finds Nh/Nsmi = (µ/2ν)1/3 ∼ 1. In

the narrow beam limit r0 � 1, Nh/Nsmi = 2−1/3. In contrast to the predictions of Ref. [8],

the growth of the beam hosing instability is comparable to that of the beam self-modulation.

Figure 1 shows the centroid displacement given by the numerical solution of Eq. (7)

versus distance behind the head of the beam (head of beam at ζ = 0) after propagating

k̂βz = 0.81 (blue curve) and k̂βz = 1.1 (red curve). Also shown in Fig. 1 is the amplitude of

the asymptotic solution Eq. (10) (dashed lines). Here we considered evolution of a 450 GeV

proton beam (γ = 480), with n̂b/n0 = 0.008 and r0 = 1 (µ ' 0.68), propagating in a

n0 = 1015 cm−3 plasma, i.e., ' 180 µm spot size, ' 12 cm bunch length, and 1011 particles

(beam parameters near that of the CERN Super Proton Synchrotron). There is excellent

agreement between the numerical solution of Eq. (7) and the linear hosing growth rate

Eq. (11).
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III. COUPLED BEAM CENTROID AND RADIUS EVOLUTION

Now we will consider the influence of the beam envelope modulations on the hose instabil-

ity, coupled via the wakefield. For a small centroid displacement, such that only the dipole

mode is retained as in Eq. (2), the beam envelope may be described by the rms radius. For

higher-order centroid displacements (beyond the dipole), asymmetry arises and the beam

becomes elliptical, i.e., 〈(x− xc)Fx〉 = 〈yFy〉+O(xc/rb)
2 for |xc| < rb. In the limit of small

centroid perturbations compared to the beam radius, i.e., correct to order O(xc/rb), the

evolution equation for the beam radius at any slice ζ is

d2rb
dz2
− ε2

r3b
=

me

γMb

2

rb

∫∞
0
drnb0r

2∂rψ̂0∫∞
0
rdr(nb0)

, (12)

where ε is the geometric emittance. Assuming a flat-top transverse beam distribution, in

the long beam regime, Eq. (12) yields [11]

d2rb
dz2
− ε2

r3b
= −k

2
b

γ

4I2(rb)

rb

∫ ζ

∞
dζ ′ sin(ζ − ζ ′)r

2
b0

rb
K1(rb). (13)

The beam radius evolution rb(ζ, z) via Eq. (13) couples to the centroid evolution Eq. (7).

Note that, in this small displacement, dipole approximation the beam radius evolution is

independent of the centroid perturbation. This is similar to the case of laser hosing for which

the radius equation is independent of the laser centroid for small centroid displacements [18].

The laser centroid depends on the laser radius, but in a much different form than for the

particle beam case.

The initial seed for the radial modulation and centroid displacement can be due to

beam mis-alignments, beam transport errors, or any asymmetries in the beam creation

and delivery. Neglecting these non-ideal beam effects, the finite number of beam par-

ticles (i.e., schottky noise) will generate a seed for the instabilities. Consider an axis-

symmetric beam containing N particles. At any slice of the beam, the initial beam ra-

dius may be expressed as rb(ζ, z = 0)/r0 = 1 + σe and the initial centroid displacement as

xc(ζ, z = 0)/r0 = σc, where σe and σc are random perturbations due to the finite number

of beam particles. For a beam slice containing Ns � 1 particles, the expectation for the

deviation from the mean is [σ2
c (ζ)]1/2 = [〈x2〉1/2/r0]/

√
Ns for the centroid displacement and

[σ2
e(ζ)]1/2 = [〈x4〉1/2/2〈x2〉]/

√
Ns for the beam radius, or [σ2

c (ζ)]1/2 ∼ [σ2
e(ζ)]1/2 ∼ 1/

√
Ns.

Here the bar indicates the ensemble average over the random distributions of beam particles

7



-600 -580 -560 -540 -520 -500
-0.15

-0.10

-0.05

0.00

x
c

ζ

0 2 4 6 8 10
-4

-3

-2

-1

0

1

2

k/k
p

lo
g
 [

|x
c(
k)

|2
]

FIG. 2. (Color online) Numerical solution for the growth of the centroid displacement Eq. (7)

without (black curves) and with (red curves) seeding the self-modulation at k̂βz = 1.14. The seed

was random with standard deviation 10−4. Beam-plasma parameters are a 450 GeV proton beam

with n̂b/n0 = 0.008, kpr0 = 1, and head of beam at ζ = 0. The inset shows the spectrum of

xc in ζ ∈ [−600, 0] for the cases without (black curve) and with (red curve) seeding the envelope

modulation.

in the slice. To model the beam we consider a discretization that represents the beam as

L/∆ζ slices, such that Ns ∼ N/(L/∆ζ). For N ∼ 1011 and L/∆ζ ∼ 103, the expectation for

the amplitude of the fluctuations in beam centroid and radius owing to the finite number of

beam particles is [σ2
c (ζ)]1/2 ∼ [σ2

e(ζ)]1/2 ∼ 10−4.

Figure 2 shows numerical solutions for the growth of the centroid perturbation Eq. (7)

with self-consistent modulation of the beam envelope Eq. (13), for the same beam-plasma

parameters as Fig. 1 (head of beam at ζ = 0) after propagating k̂βz = 1.14. The initial beam

radius at any beam slice was rb(ζ, z = 0) = 1+σe, where r0 = 1 is the long-beam equilibrium

radius [11], and the initial centroid displacement at any slice was xc(ζ, z = 0) = σc. The

black curve shows the centroid displacement with initial random perturbations with standard

deviation [σ2
c (ζ)]1/2 = 10−4 and σe = 0 (i.e., no seed for the envelope modulation), and

the red curve shows the centroid displacement with initial random perturbations having

standard deviation [σ2
c (ζ)]1/2 = [σ2

e(ζ)]1/2 = 10−4 (i.e., seeding both modulation and hosing

instabilities). The inset shows the spectrum of the centroid displacements in the region

ζ ∈ [−600, 0]. The coupling of the envelope modulation to the hosing is evident in the

harmonic generation present in the centroid perturbation when the modulation instability
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FIG. 3. Beam envelope xe and centroid xc versus ζ at kbz/γ
1/2 = 4 for an initial perturbation of

10−4 in the envelope and 10−3 in the centroid, assuming a slab proton beam with γ = 480 and

nb/n0 = 0.008.

is seeded. Note also a DC component is present, indicating a long wavelength displacement

of the beam tail from the axis.

As shown in Fig 2 larger centroid perturbations occurred with coupling of the hosing

and self-modulation instabilities, for the initial random seed used in Fig. 2. Averaging over

many realizations of initial random seeds, with the same beam-plasma parameters as Fig. 2,

the maximum displacement was 〈〈max[xc(ζ), (σ2
e)

1/2 = 10−4]〉〉/〈〈max[xc(ζ), σe = 0]〉〉 ' 2.2

at k̂βz = 1.14 observed in the region ζ ∈ [−600, 0], i.e., the average centroid displacement

with seeding of the envelope modulations is larger than without seeding (σe = 0). The

coupling of the self-modulation to the hosing not only generates harmonics, but, in general,

will increase the amplitude of beam hosing.

The above analysis assumed a small beam displacement xc < rb. To understand the phe-

nomenology of the coupling of the centroid to the beam envelope modulation, we considered

the coupled envelope and centroid evolution equations in 2D-cartesian (x, z) geometry (i.e.,

a flat beam), valid for arbitrarily large centroid displacements. The solution for the wake

potential in 2D-cartesian geometry is

ψ = −q
e

∫ ζ

∞
dζ ′ sin(ζ − ζ ′)

∫ ∞
−∞

dx′

2
ex<e−x>

nb(x
′)

n0

, (14)

where x< (x>) is the smaller (larger) of x and x′. For a flat-top beam transverse distribution

nb = n̂b(x0/xe)Θ[xe − (x− xc)], the evolution of the beam envelope and centroid are, in the

long beam regime,
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d2xe
dz2
− 9ε2x

x3e
=
k2b
γ

3xc
x2e

sinh(xe)

∫ ζ

∞
dζ ′ sin(ζ − ζ ′)x0e

−xe(ζ′)

xe(ζ ′)
sinh[xc − xc(ζ ′)]

− k2b
γ

3

xe

[
cosh(xe)−

sinh(xe)

xe

] ∫ ζ

∞
dζ ′ sin(ζ − ζ ′) x0

xe(ζ ′)
e−xe(ζ

′) cosh[xc − xc(ζ ′)], (15)

and
d2xc
dz2

= −k
2
b

γ

sinh(xe)

xe

∫ ζ

∞
dζ ′ sin(ζ − ζ ′) x0

xe(ζ ′)
e−xe(ζ

′) sinh[xc(ζ)− xc(ζ ′)], (16)

respectively, where εx is the rms slice geometric emittance. In the limit of a small beam

centroid displacement xc < xe ∼ 1, the beam centroid couples to the envelope evolution

to order O(xc/xe)
2. Hence we expect 2nd harmonic generation in the envelope modulation

owing to the coupling to the centroid displacement. Figure 3 shows the numerical solution

to the coupled beam envelope and centroid Eqs. (16) and (15) for a proton beam [initially in

equilibrium xe(z = 0) = 1] with γ = 480 and nb/n0 = 0.008. Here we have assumed an initial

seed amplitude of 10−4 for the envelope modulation and 10−3 for the centroid displacement.

As illustrated in Fig. 3, when the centroid displacement grows large xc ∼ xe ∼ 1, the

envelope perturbation develops modulation at λp/2.

For large beam centroid displacements on the order of the plasma skin-depth, xc ∼ 1,

the structure of the beam-driven wakefields is strongly modified, which will have deleterious
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FIG. 4. (Color online) Transverse wakefield (Ex−By)/E0 after kbz/γ
1/2 = 4 with the same beam-

plasma parameters as Fig. 3, for (a) seeding only the envelope modulations (an initial perturbation

of 10−4) and (b) an initial seed of 10−4 in the envelope modulation and 10−3 in the centroid

displacement.
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effects for acceleration. Figure 4 shows the transverse wake (Ex − By)/E0 calculated by

solving the coupled Eqs. (16) and (15) for the same beam-plasma parameters as Fig. 3 after

propagating kbz/γ
1/2 = 4 for (a) without seeding the centroid perturbation (initial envelope

perturbation of 10−4) and (b) with seeding both the centroid and envelope perturbations

(10−4 in the envelope and 10−3 in the centroid). Figure 4(b) shows that the hosing instability

will generate an on-axis deflecting force that will scatter a trailing witness bunch.

IV. CONCLUSIONS

In this work we have derived the coupled beam envelope (self-modulation) and centroid

(hosing) equations for a long beam in an overdense plasma. The growth rate of the hosing

was calculated including return current effects. The hosing growth is comparable to the

growth of the beam envelope self-modulation Nh/Nsmi ∼ 1. The coupling between the

beam centroid displacement and envelope modulations results in harmonic generation in the

centroid displacements, and, in general, larger amplitude hosing. Sufficiently large centroid

displacements results in coupling to the envelope modulations and strong modification of

the wakefield, as demonstrated by solving the coupled equations in 2D-cartesian geometry.

Transverse beam stability is critical to PWFAs, and these results indicate the necessity

for strongly seeding the self-modulation instability without seeding beam hosing for future

self-modulated PWFA experiments.
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